数势科技谭李:wiftgent如何攻克nalyticgent的核心难题

统一语义层构建 VS 数据分析不精准

数势科技SwiftAgent 2.0构建了统一的指标与标签语义层,即通过自然语言到指标+标签语义(Natural Language to Metrics&Label)即可实现数据洞察,解决大模型对底层业务语义难理解的问题,同时建立各行业标准、指标、人货场标签等易于理解的语义层。SwiftAgent 2.0统一语义层的构建让AI更“懂”企业数据,助力企业实现智能决策。

多源异构数据链接 VS 数据结构与维度单一化

数势科技SwiftAgent 2.0不仅可以将指标、标签一体化,基于人群的多维交叉分析,还实现了多源异构的数据接入,导入文本、Excel、图片、音视频等非结构化知识,基于新闻、政策解读、行业报告等多维度了解数据背后的“因果",如:“导致黄金ETF产品持仓量持续升高的因素或为美国劳工市场有降温迹象,减息预期加强,推动金价上涨等”。SwiftAgent 2.0多源异构数据的链接AI更“懂”数据,提供用户全面分析思路,大幅加强决策精准性。

用户可干预 VS 人机融合问题

以往在人机交互沟通中,如用户无法判定明确需求,进行模糊化搜索,往往会出现所答非所问的现象,数势科技SwiftAgent 2.0可通过更自然的方式引导用户,并且将AI思考过程白盒化,用户可以清晰的看到它的“大脑”。用户可以通过“点赞”和“踩”的反馈进行强化学习,不断纠正错误、调整查询,从而更懂用户所想所需,也让分析更准确。如当用户提出“我想看一下最近的销售情况。”这种模糊的数据查询,SwiftAgent会给出“最近7天销售额”、“本月北京地区销售额”等选项供用户选择,用户还可以根据提示重新提问,最终得到他真正想要看的分析内容,SwiftAgent 2.0用户可干预让AI更“懂”用户,减少认知负担。

持续反思学习 VS 学习迭代停滞

SwiftAgent 2.0可将所有使用用户过往的问答分析沉淀到知识库,在之后其他用户相似的问询场景中,直接提供结论并提供思考过程。这种不断反思学习的能力,也发挥了大模型最大的特点。随着时间的推移不断进步,SwiftAgent 2.0持续反思学习让AI更聪明,全面贴近业务需求。

数据计算加速引擎 VS 计算查询效率低及性能弱

SwiftAgent 2.0采用了数势科技独创的数据计算加速引擎,可以实现秒级数据查询,真正实现实时的人机交互。

1)底层选用了StarRocks、Doris等数据分析引擎作为执行引擎,在大宽表查询、跨模型关联查询和物化视图等方面性能更好;

2)结合对数据加工和使用场景进行了一系列优化,提供基于视图的预计算能力和基于预计算结果的查询优化能力;

3)数据虚拟化技术,将数据定义和物理数据(业务)解耦,实现指标/标签灵活加工使用,无需排期开发;

生成式 AI 为企业数据分析带来两大关键变革

数势科技联合创始人谭李表示,以往一线业务人员想要了解数据情况,需要向数据分析团队提需求,流程漫长。这不仅消耗了大量的时间成本,还使得数据获取变得复杂而低效。然而,通过引入AI Agent,我们实现了一线业务人员直达数据的便捷通道,极大地降低了数据使用的门槛,实现了数据的民主化。这种普惠化的数据使用方式,打破了传统的数据壁垒,为企业的数字化转型注入了新的活力,无疑将为企业带来更高效的运营和更优质的服务。

另一方面,传统的数据分析往往需要用户根据数据去发现问题、提出假设并进行验证。这个过程不仅耗时,而且受限于个人经验和知识。通过引入AI Agent,能够自主地进行数据探索、分析和可视化,从而快速生成有价值的见解。比如你可以基于数据结果与AI沟通“有哪些可以提升业绩的建议?”等洞察性的问题。总的来说,生成式AI正在改变企业数据分析的游戏规则,通过数据民主化和普惠化,以及从手动分析到自主洞察的转变,为企业带来了前所未有的数据驱动决策能力。

在论坛现场,曜金资本总经理李可先生回顾了人工智能的发展历史,并对人工智能的未来发展做了生动幽默的预测。同时,李可先生强调了生成式AI和SaaS技术在推动企业创新和优化业务流程中的重要作用,并对未来的合作机遇表示期待。亚马逊云科技大中华区初创生态及投资业务发展总监胡瑛先生进行了开场分享,他详细介绍了亚马逊云科技在支持初创企业成长方面的努力和成果,并展望了生成式AI技术的未来趋势。随后,众多行业大咖就生成式AI场景与SaaS碰撞中的产业视角和投资视角进行了精彩的对话。

关于数势科技

数势科技是行业领先的数据智能产品提供商,拥有在大金融、高科技制造和泛零售等领域的专业洞察力及技术实力,为全球优秀企业提供基于大模型增强的智能指标平台(SwiftMetrics)、智能分析助手(SwiftAgent)、智能标签平台(SwiftCDP)及智能营销平台(SwiftMKT)系列产品,提升企业的数字化决策能力,推动企业数字化升级

THE END
0.Infra从“支撑”向“引擎”跨越腾讯云AI智能体模型启动提速17倍,大规模服务扩容时间从10分钟缩短至34秒;多模态推理加速4倍,自研推理引擎覆盖生文、生图、生视频等模型;通过内存优化与通讯协议升级等创新,显著降低计算开销,推动推理集群的性能发挥到极致。 智能体要从“实验室”走向“生产级”,工程问题和安全问题将成为核心痛点。全新发布Agent infra解决方案Agent jvzquC41pg}t0|npc0ipo7hp1u~04977/2?.3A4fgvgjn6nphs~gkz:;2;6867xjvor
1.AI新引擎Q: 量子计算与传统计算有何本质区别? A: 量子计算与传统计算的本质区别在于它们的计算单元和计算方式。传统计算机使用二进制的位(bits),每个位要么是0要么是1。而量子计算机使用量子比特,它们可以同时处于0和1的叠加态,这种特性使得量子计算机在处理复杂问题时具有巨大优势。具体来说,一个N位的量子比特可以同时表示jvzquC41yy}/lrz{cpmpppxjg0ipo8f1h|iu:pfcc5
2.人工智能融入“云”端IT人工智能是火箭 云计算是引擎 业内,大家将人工智能、大数据以及云计算称为“铁三角”关系。吴维刚表示,“人工智能与云计算,两者不是同一事物,但是相互发展。云计算提供移动计算模式和计算资源,人工智能的发展正需要这种计算资源。” 假如将人工智能看作是一台火箭,那么大数据是燃料,云计算是引擎。据了解,经历了多年的jvzq<84kv0vfqyqg0eun0ls1p3532:=125871l622;33;A=9;5?/j}rn
3.数字孪生系统的一般架构数字孪生引擎一方面是实现物理系统和虚拟系统实时连接同步的驱动引擎,另一方面是数字孪生系统智能算法和智能计算引擎核心,为用户提供高级智能化服务。在数字孪生引擎的支持下,数字孪生系统才真正形成,实现虚实交互驱动以及提供各类数字孪生智能化服务,所以数字孪生引擎即是数字孪生系统的“心脏和大脑”。 jvzquC41yy}/eunk0eun0ls1njxi1q~zz1814<591v814<5925e4;><5;24ivvq
4.杨成虎:存储&计算是过去,记忆&推理才是未来在数据管理层 ArcNeural,是数据智能体。打破传统数据库计算加存储的本质,引入记忆加逻辑体系。其中,记忆部分为多模态智能引擎,支持图模型和向量引擎,分别负责显式和隐式关系管理。逻辑部分则利用图算法或 LLM 资源来进行逻辑推理。 在ArcNeural 架构下,天然的具备了三大优势:jvzquC41jwh/djfk0ci/ew4xkg}05;726
5.“智算聚芯力津彩新未来”天津市人工智能计算中心200P上线仪式暨华为公司安信军团COO曹泽军先生在致辞中表示,天津作为第一批国家新一代人工智能创新发展试验区,在天津市、河北区领导的大力支持下建成了天津市人工智能计算中心,一期算力供不应求实现上线即满载。“算力新高度、产业新引擎、科研新范式、人才新土壤”,已经成为天津市人工智能计算中心助力天津经济高质量发展的四个“新”榜jvzquC41yy}/vlz0gf{/ew4kphu039:6156:;7mvo
6.支撑智能经济体系的主体博弈均衡计算引擎和大型宏观经济政策模型国家自然科学基金委员会管理科学部发布2023年度国家自然科学基金委员会管理科学部专项项目指南—基于通用大模型的工商管理前沿科学问题研究、中国经济发展规律的基础理论与实证、基于数据与行为的金融系统建模分析、2023年度国家自然科学基金指南引导类原创探索计划项目—“支撑智能经济体系的主体博弈均衡计算引擎和大型宏观经济政jvzquC41yy}/p€z0gf{/ew4kphu03;5915967<3jvo
7.图计算引擎图数据库星环科技为您提供图计算引擎 图数据库相关内容,帮助您快速了解图计算引擎 图数据库。如果想了解更多图计算引擎 图数据库资讯,请访问星环科技官网(www.transwarp.cn)查看更多丰富图计算引擎 图数据库内容。jvzquC41yy}/v{fpuygsr7hp1mkzyxwf/fkucrq177>6/;>
8.腾讯智慧交通升级AI+双轮驱动架构加速产业智能化转型时空计算引擎在交通领域应用 今年,腾讯深度参与深圳市宝安区智慧交通提升工程,构建宝安智慧交通数字孪生底座,支撑智慧公交线网系统建设,提升公共交通服务能力,为公众带来更便捷的出行体验。日本工程院院士、东京大学特任教授胡昂谈到,从交通流模拟到智能导航,从交通管理到城市规划,数字孪生技术使我们能够更深入地理解交通系统jvzq<84f0{uvvq3ep1~x5?5142842B4v42842B5:a3:89?66;0nuo
9.数字地球生态讲堂第22期|《星图地球智脑引擎GEOVISEarthBrainGEOVIS Earth Brain 星图地球智脑引擎是基于自主遥感智能大模型,深度融合地球大数据、分析解译算法与超级计算机构建的可计算数字地球核心引擎,通过密集型“智能计算”为用户提供地球数据智能处理、地球信息智能感知、地球场景智能重建能力,并向互联网用户开放各类计算能力接口,便以快速构建云上应用,为地球科学研究、遥感行业应jvzquC41v071lzpc0eun0ls1rkj`4B9;42;887xjvor
10.阿里云基于空间数据引擎及多源数据计算融合,构建数据底座 空间数据引擎为空间治理提供空间数据多源存储与高效计算能力,多源数据计算融合引擎实现以空间单元为核心的数据计算融合,是空间治理工作的核心能力 基于智能计算引擎,实现算法、场景的高效开发 集成空间计算、智能模型及流程搭建、计算调度等一体化便捷开发框架,智能化开发赋能jvzq<84fcvgqcjx0cnozww3eqo5jpmzuvt0pjywtcr.tnxqwtif
11.2024中关村论坛年会十大重大科技成果重磅发布清华大学戴琼海团队突破传统芯片架构中的物理瓶颈,研制出国际首个全模拟光电智能计算芯片。该芯片具有高速度、低功耗的特点,在智能视觉目标识别任务方面的算力是目前高性能商用芯片的3000余倍,能效提升400万倍,该成果开创了全新计算技术时代,有望成为人工智能发展的有力引擎。 jvzquC41pg}t0lsuvqil0lto1pkxu5gymz332;926/;34<<330nuo
12.高性能计算解决方案解决方案产品与解决方案超聚变FusionOne HPC解决方案,为客户提供一体化高性能计算平台,通过软硬件的深度融合和自研OneMind智慧引擎,为客户提供运行高效、安全可靠、运维简单和绿色节能的智慧HPC解决方案,满足教育科研、制造仿真等行业高性能计算业务场景。jvzquC41yy}/zozukqt/exr1ep5qtxiwev5irl2uqn{ukxs
13.计算机行业算力租赁:大模型发展的关键引擎AI算力需求空间测算训计算机行业算力租赁:大模型发展的关键引擎 AI算力需求空间测算 训练规模突破临界值,大模型“智慧涌现” 大模型训练规模与参数量、数据量及训练轮数等紧密相关。当模型规模突破阙值,即出现“智慧涌现”。 迈入AI智能时代,计算芯片依赖已从CPU转向GPU AI时代离不开机器学习,而神经网络训练及推理需要进行大量的矩阵运算和jvzquC41zwkrk~3eqo526?98;;83;879:88:5B5
14.超万卡GPU集群关键技术深度分析2024计算引擎卸载加速 1/0 设备的数据路径与控制路径,面向节点提供标准化的virtio-net(Virtual1/0 Network)、virtio-blk(Virtiual 1/0 block)后端接口,屏蔽厂商专用驱动。 存储引擎在 DPU 上实现存储后端接口,可基于传统 TCP/IP 网络协议栈或RDMA(Remote Direct Memory Access)网络功能连接块存储集群、对象存储集群、jvzquC41yy}/5?5fqe4dp8ftvkimg88288>55h6345>:6<580jznn
15.浙江大学计算机系统结构实验室蚂蚁智能引擎技术事业部-共享智能 高级技术专家 在研项目 Projects 面向预训练语言模型下游迁移任务 预训练语言模型(Pretrained Language Models,PLMs)已经成为了自然语言处理(NLP)的主流方法。通过在大 基于TPM的安全可信技术研究 随着云计算、大数据、物联网的发展,越来越多的信息系统部署到云上,尤其是关系国jvzq<84cte4{l~3gfw4dp8;473?0nrxv0jzn
16.基于GitOps和CI/CD开发低成本可观测AI智能体实践开发者社区智能计算引擎:兼顾深度分析与极致实时 有了强大的存储系统,下一步是构建灵活高效的计算引擎。我们面临两类典型需求:涉及海量数据、复杂计算,要求结果绝对精确的深度分析型任务,以及如 Dashboard 展示,强调低延迟、高响应速度的实时交互型任务。为此,我们在计算层做了多项关键升级: jvzquC41fg|fnxugt0gmk‚zp0eun1jwvkerf1:;:7;7: