企业级应用迎来“黄金时代”,专业咨询助力是实现价值飞跃的关键

随着生成式AI技术的到来,企业对AI的应用开启了一个新的篇章,也将迎来新的“黄金时代”。尽管“让AI成为核心生产力”已成为企业日益迫切的需求,但实际的落地应用却非一日之功。面对各不相同的应用场景和复杂需求,企业管理者们也产生了诸多的困惑。例如,与传统AI相比,生成式AI适用哪些场景?有了生成式AI还需要专业咨询机构的支持吗?他们在AI技术落地中扮演什么样的角色?如何才能让生成式AI在商业环境中发挥最大的作用?

(林岚,IBM 咨询大中华区合伙人、大数据与人工智能事业部总经理)

专业团队“调教”,最大程度发挥生成式 AI 的价值

对于AI应用,IBM现在会根据客户的情况酌情采取不同的实施方法。一种是采用传统AI落地,这种适用于企业问题非常聚焦,同时要求答案非常精准的情况。比如一个集团性汽车企业要用AI解答严肃的人力资源问题,我们用传统AI的方式提前在数据库中定义好问题类型,然后通过自然语言识别(NLP)把文字转换为一组数字串向量,将最合适的问题答案匹配和抓取出来。

在用户的问题非常发散,在特定领域内需要模型不断进行自我学习和升级优化的情况下,则更加适合采用生成式AI,企业大脑、供应链控制塔、客户之声VoC+等就属于这一类。比如,某化工企业客户直接采用生成式AI的方式实施供应链控制塔,利用大规模计算自动进行数据库学习,理解其在供应链方面的专有定义,2周就覆盖了企业供应链相关的大量问题。

然而,在具体应用和落地的过程中,不少企业已经发现,传统AI可以特别准确,但大模型在一开始往往是不够准确的。企业需要在生成式AI的基础上建立一个微调层(Fine Tune),然后根据企业的特定语言和情况建模。面对用户提出的需求,微调层会先进行一些简单的预处理,然后再交给大模型进行理解和分析,这样就可以大大提升生成式AI的可靠性。

这也回答了企业在应用生成式AI时面临的另一个常见的问题:为什么有了生成式AI还需要专业团队提供服务?因为在微调层进行建模工作正是专业咨询公司能够发挥专长的地方。在专业团队的帮助下,生成式AI可以更加充分地发挥其价值。

具体而言,这些价值主要体现在三个层面。

第一个层面,是以问答的方式给用户提供准确的符合场景的答案。比如,当用户对生成式AI提问:在一个特定化工企业中呆滞库存slow moving的定义是什么?如果没有微调层,生成式AI就会给出一个非常通用的答案。但是有了针对企业的特定模型后,用户再问同样的问题,生成式AI就会根据用户提问的上下文、公司的特定定义等信息给出更精确的回答:“对于化学品部门的特定物料——TPU来说,呆滞库存的定义是滞留三十天以上的物料”。

第二个层面,是根据用户需求,综合多维度信息理解并抓取正确的字段,灵活生成各种图表,并且自动匹配最适合的图表呈现方式,比如以饼状图表现百分比,以饼状图体现某个涂料在不同地区的销量,以折线图展现一款产品的销量变化趋势等等。

第三个层次,是通过生成式AI主动发现问题,并且帮助企业进行深入的洞察分析,同时推进后续工作的完成。管理者打开系统,智能助手就会主动提醒某款产品的销量问题需要关注,同时触发智能工作流给销售经理,销售经理收到预警的同时会收到几种推荐解决方案和历史使用的百分比,销售经理选取合适的解决方案解决问题,其后智能工作流一直在系统中跟进问题,进行预警、升级问题等,直到问题100%闭环解决。

这其中的第二、第三个层次,尤其依赖专业团队的支持,战略专家、供应链领域专家除了提供技术帮助外,还可以更好地指引客户高效有意义地使用企业数据。

加速技术转化,利用AI为企业增能

除了拥有这一强大的AI与数据平台,IBM同时还可以提供从规划到落地端到端的AI相关服务,这样的综合能力在业界是独一无二的。我带领的IBM咨询大数据与人工智能部门所负责的正是将AI等新技术转化为客户的商业应用。为了加速企业对AI的应用,我们打造了专门的大数据与AI核心方案,其特点可以归纳为——价值引领、行业聚焦、绿色持续 。

首先,价值引领 是指IBM的生成式AI解决方案能够超越传统方案,为客户创造更大价值。就拿企业最关注的数据资产利用来说,传统方案是通过BI报表方式收集、加工、整理和呈现数据,不仅形式单调,而且无法满足不断变化的管理需求。而利用有生成式AI加持的企业大脑解决方案,就可以实现根因分析、智能工作流、企业头条能力和应用集市等能力,成就智能化业务运转与数字化的企业运营。

其次,行业聚焦 是IBM的大数据与人工智能核心方案的一大亮点。IBM在生成式AI基础上建立了行业微调模型,聚焦不同行业的需求,例如智能美肤、皮肤健康检测、智能牧场等,持续发展演进,让客户站在巨人的肩膀上再上一层楼。聚焦特定行业,精准定位应用场景有助于最大化发挥AI效能,IBM 咨询的价值就在于能将行业的洞察、对企业业务的认识带给客户,激发出新的专业的AI应用场景,最终实现业务价值。

最后,绿色与可持续发展 体现在IBM所有的方案中。IBM从1990年开始就发布了绿色白皮书,现在的供应链控制塔方案中也融入了碳排放积分计算能力,已广泛应用于汽车行业。我们还通过生成式AI和物联网技术,帮助一个大型集团化煤炭企业客户分析井下环境的潜在危险,给现场的工人提供实时预警,降低工伤风险。可持续发展是IBM的核心价值,生成式AI将在此领域发挥更大作用。

真实场景中发挥生成式A I 潜力,创造实际业务价值

今天,几乎每家企业都在寻求如何把 AI快速落地到具体的商业场景中,转化为实实在在的生产力,带来实际的业务价值。借助价值引领、行业聚焦、绿色持续的大数据和人工智能解决方案,IBM咨询团队已经和客户展开积极的探索。

比如,不少汽车、新能源、零售等行业客户都在利用企业大脑和智能工作流 帮助自己的管理更上一层楼。企业大脑犹如企业的智能中枢,能够从庞大的业务数据中提取洞察、进行分析,为企业的决策提供指导。企业大脑与智能工作流结合,可基于决策发派任务,自动生成工作流,接受生成式AI提供的解决方案建议,实现业务闭环。

智能工作流和企业大脑的一大价值在于能够实现跨领域流程的贯通和跨部门的协同分析和决策,大幅降低沟通成本,提升工作效率。比如,IBM咨询团队在企业大脑的平台中为企业用户提供了数据集市,实现数据共享的全员覆盖,销售人员、物流部们等各类业务人员可以像购物一样将数据添加到购物车中,进行二次分析,并在数据场景广场发布他们的分析结果。数据集市今3月上线后,已为这家客户累计了数据集2500+个,页面浏览量达到三万多个,用户量2000+,此外,目前由业务用户们共创建的数据作品累计已将近2000个,数据共享效率提升了30%。

其次,该解决方案可以帮助企业实现线上流程自动生成与流转,同时实现追踪链路可视化,不仅让流程更加透明和高效,还能基于生成式AI模型的应用实现自动化异常预警提醒,帮助企业在关键时刻迅速响应。我们已经帮助一些客户将问题的发现时间从过去的3天缩短到仅需1小时,解决问题的时间也从5天减少到了1天。

智能工作流平台和企业大脑还为企业提供千人千面的工作台,在保证业务个性化的同时,保留平台逐步迭代扩张的能力。比如,车企的整车项目经理可以根据自身工作内容定制集成不同系统功能的个性化工作页面,在同一个页面上完成车型产品定义动力总成配置、车型产品配置、技术更改申报等所有工作,同时还能借助生成式AI机器人了解每个车型项目中每个节点的状态及风险预警。这帮助企业部门间的业务流转从电话、邮件转变为系统上调用,效率提高了大约30%-50%。

另一个正在被企业关注和加速应用是供应链控制塔 解决方案。在计划供应场景中,供需波动是常见的问题。市场变化可能导致部分产品积压在库房中,形成非流动库存的挑战。传统的供应链控制塔通常依赖预定义规则和模式进行运算,在特定场景下有效,但在复杂、多变的供应链环境中显得力不从心。生成式AI的出现为设计和规划供应链控制塔提供了更多自动化、个性化和创新的手段,帮助企业有效应对上述挑战。

供应链控制塔的具体工作流程是计划经理登录控制塔后,通过与智能助手交互,获取推送的关键指标和数据洞察分析结果。如果发现库存出现亚健康状态,智能助手能够实时进行根因分析,并推荐多种解决方案。计划经理选择最佳方案后,智能工作流将被触发,并向计划员分配任务。计划员根据解决方案执行操作,随后更新工作队列和工作流进度。问题解决后,工作队列将关闭并发送通知,实现100%闭环管理。

它不仅仅是一个数据展示工具,更是一个集成了感知、分析、预测、决策、执行和学习等多种能力的智能化系统。通过智能预警和智能解决方案推荐,实现了从数据监控到问题解决的全过程管理。在这一过程中,生成式AI发挥着关键作用,为供应链控制塔赋予了更高的智能性。

生成式AI通过不断学习大量非结构化数据,理解用户解决问题的模式,创造性地生成全新的解决方案以适应不同情况下的需求,这种创造能力在企业生产环境能够节省大量的人力和时间成本,对企业而言变得愈发重要。同时,专业团队对于微调层的训练,能够使得生成式AI提供更加符合不同企业场景的答案,帮助客户最大化利用数据。IBM作为专业服务团队,一直与客户共同成长,始终致力于帮助客户运营数据和实现业务协作生态,尤其是利用生成式AI实现价值飞跃。

关于IBM

IBM 是全球领先的混合云、人工智能及企业服务提供商,帮助超过 175 个国家和地区的客户,从其拥有的数据中获取商业洞察,简化业务流程,降低成本,并获得行业竞争优势。金融服务、电信和医疗健康等关键基础设施领域的超过 4000 家政府和企业实体依靠 IBM 混合云平台和红帽OpenShift 快速、高效、安全地实现数字化转型。IBM 在人工智能、量子计算、行业云解决方案和企业服务方面的突破性创新为我们的客户提供了开放和灵活的选择。对企业诚信、透明治理、社会责任、包容文化和服务精神的长期承诺是 IBM 业务发展的基石。

THE END
0.销售三部曲,变现更容易- 例子:评估自己的个人优势和资源,例如你在销售中特别擅长的技巧、销售经验或与人工智能相关的知识。了解自己的长处,可以帮助你找到与AI行业相关的销售机会,并将重点放在这些机会上。 4. 做好布局采取持续行动: - 例子:制定一个详细的销售计划和行动计划,明确目标市场、目标客户和销售渠道。例如,如果你专注于AI行业jvzquC41yy}/lrfpuj{/exr1r16d9=kgd7;4;B
1.AI预测未来十年行业大变局:消失与新生AI预测未来十年行业大变局:消失与新生 时代浪潮下的行业变革 在科技飞速发展、社会持续进步的今天,行业格局正经历着前所未有的深刻变革。未来十年,哪些行业会逐渐消失在历史的长河中,又有哪些行业会如雨后春笋般蓬勃兴起?这不仅是创业者、投资者关注的焦点,也是每一个身处职场或即将踏入职场的人需要思考的问题。接下jvzquC41dnuh0lxfp0tfv8}kcvobph|kp3841jwvkerf1mjvckrt1:97:6912;
2.人工智能相关的十大考研专业都说十年前的土木、五年前的互联网很火,那么在未来能受到就业市场青睐的专业又有哪些呢?今天就来听听ChatGPT的看法!同时大家也可以根据自己的判断来说说这些答案是否靠谱、是否值得考研人参考! 1.人工智能与机器人技术 人工智能与机器人技术是当前热门的领域之一,几乎现在的各个行业都有渗透,未来的发展前景很广阔。但jvzquC41yy}/jjnygpzpr7hqo1En?qtog(i>Xrjy(cCjpmjz(coe?:563
3.麦肯锡重磅报告:AI对哪些行业冲击最大?6月14日,咨询机构麦肯锡发布了的一份题为《生成式人工智能的经济潜力》的研究报告,在报告中,分析师们通过对47个国家及地区的850种职业(全球80%以上劳动人口)的研究,探讨了在AI成指数级发展背后,对全球经济将带来的影响,哪些行业冲击最大,哪些人面临失业威胁? 以下为报告主要内容: AI取代人类工作的时间被大幅提前了10年,在2jvzquC41ycrmu}wggvio0lto1cxuklqgu197;:732
4.人工智能就业方向及前景可以预见,未来人工智能在医疗、金融、旅游、零售等行业中都将有着广泛应用,在银行、保险等金融行业中,人工智能已经成为风险控制、反欺诈、客户服务等重要工具;在教育、医疗等领域,人工智能也将促进行业升级,为人们提供更加高效的服务。 今年,人工智能、移动终端、云计算、大数据等相关专业应届生备受企业关注,同学们都是jvzquC41yy}/qq6220ipo8lcqmgp1?>54;>10qyon
5.从事ai工作学什么专业好就业人工智能最吃香的10大专业盘点→买购那么与人工智能有关的热门专业有哪些?本文maigoo编辑整理人工智能最吃香的10大专业,分别有计算机科学与技术、软件工程、数学与应用数学、人工智能专业、自动化、电子信息工程、数据科学与大数据技术、网络工程、信息安全、机器人工程等专业上榜。继续阅读下文,详细了解这些ai行业最吃香的专业相关信息。 排排榜 关注榜 得jvzquC41yy}/ojniqq4dqv4vqr556=9;:0nuou
6.AI大模型时代:技术工作者的职业跃迁指南,5大转型方向助你抢占先机高端研发人才稀缺:能参与大模型底层算法研发、优化的专业人才全球范围内都极为有限,这类人才往往需要深厚的数学功底和计算机科学基础,堪称"技术界的珍稀动物"。 应用型人才缺口大:能将AI大模型技术应用到具体行业场景的人才更是供不应求。这类人才需要既懂技术又了解行业,是真正的"跨界专家",也是企业最渴求的人才类型jvzquC41dnuh0lxfp0tfv8vsa66:;B9251gsvrhng1jfvjnnu175;B942;9
7.商务信息技术学院>专业设置>人工智能技术应用人工智能技术应用专业就业前景: 随着人工智能逐渐在各个行业的落地和应用,AI人才逐渐成为竞相争抢的资源,他们的身价也随着人工智能的高歌猛进而水涨船高去3年中,AI相关岗位平均招聘薪资正以每年近8%的速度增长人工智能岗位平均招聘薪资已达2.58万元,远高于一般技术类岗位除了高昂的起薪外,AI人才薪资成长率也极为可观数jvzquC41yy}/jw{ee0kew7hp1unbpp}kpz{f{~fp1|nvcw~g1tkoixsi|joogwl1
8.高考热门专业,学少儿编程未来可以选择哪些专业呢?零基础入门到精通,收AI领域辐射专业广泛 有些家长和同学以为,人工智能就是马斯克搞的类似机器人、星链,或是ChatGPT那样给人类写作文和画画吗?学编程就是做程序员吗?小编给大家细细讲讲~ 人工智能领域直接涉及的专业超多: 计算机科学与技术、软件工程、网络工程、信息安全、物联网工程、数字媒体技术、智能科学与技术、空间信息与数字技术jvzquC41dnuh0lxfp0tfv8Qkdtg25:81ctzjeuj1fgzbkux136=8:@;;6