hat:应用拐点已至

一、ChatGPT会给行业带来怎样的影响?

AI技术的“乐高化”会让迭代速度越来越快

戴雨森 真格基金管理合伙人

从 ChatGPT 中,我看到新一代的 AI 技术随着不同组件走向成熟,已经进入“乐高化”的趋势。比如,我可以在 ChatGPT 里生成适合 Midjourney 的 prompt,把多个 AI 应用打通来使用。当技术出现“乐高化”的时候,意味着迭代的速度会越来越快,原来需要单独开发的部分变成了公用的、可复用、可调用的组件。

互联网底层技术“乐高化”之后,应用开发者的门槛不断降低,所以迎来了消费互联网创业的大爆发。我相信 AI 领域的创新也走在这个阶段。

很多人也在诟病 ChatGPT 会胡编乱造事实,的确是这样。我认为目前 AI 更适合需要创意而非需要精确的商业模式。例如需要对生命负责精确度的 L4 自动驾驶商业化应用的进度就比较慢,而 ChatGPT 很适合需要打草稿和找创意的行业。一些我认为已经做到“经过简单修改可用”的例子包括:

1、为程序员编程和 debug 提供帮助;

2、为公司起草招聘启事、Offer letter,活动预告等日常文本;

3、跨境电商等跨语言的商品描述和客户服务;

4、帮助文案策划从不同的角度寻找论点和思路。给 ChatGPT 一个观点,他能够帮助从正反给出几个不同的论点;

5、帮助创意人士进行头脑风暴。例如我尝试用 ChatGPT 生成虚拟世界里面怪物的描述,写得很好。

应用成本降低后,ChatGPT类产品会颠覆未来

Peter刘欣旸 Magi创始人

体验过 ChatGPT 之后有一个比较直白的感觉,它像是一种写高考作文似的  AI。它的训练是基于非常大量的文本,就好像我们写高考作文的时候,会去找论据,而过程中可能想不起来具体是谁说的,或者具体哪一句话。在看一些 ChatGPT 的回答当中出现了这种感觉,它似乎知道一些来源,有很多的记忆,读过一些东西,但是它把这些东西混成了一篇读起来很通畅的文字。

我觉得它最有可能应用于类似搜索引擎的领域。它带来的颠覆性可能会是 TikTok 对于 YouTube 的颠覆。因为 C 端的用户都非常的懒,如果我得到一篇让我非常满足的答案,就没有动力再去证实这些来源,看它究竟说的对不对。

ChatGPT可能带来标注服务的创业机会

包英泽 跳悦智能创始人兼CEO

Amazon 做无人购物的时候,最早期有人在监控器里看着,但是一段时间之后,标注的数据足够多了,它就智能了。早期很多做无人车的公司也都是这套思路,一开始通过 5G 遥控的方式来开,背后有一个驾驶员。

如果 ChatGPT 也是依赖大量人工标注,似乎就产生了一个新的范式:AI 产品前期都会有一个人工重度参与的过程。一个投资的机会就在于提供标注服务。

比如,中国各行各业不可能直接用现有 ChatGPT 的标注。想用中国版 ChatGPT 的企业,都需要花很多钱比如 500 万请 100 个人标注。为大模型做人工标注冷启动,可能会变成一个生意。纯粹追求不用标注员,就做一个能结合场景的大模型,会变得越来越少。想用大模型,前期必须有重金投入做标注。

ChatGPT是否能帮助未来AI对人类情绪的猜测

代码家 真格基金投资副总裁

如果标注者能够训练出人们预期的文字的数据,未来能不能继续拓展?例如,如果我想要用标记者的方法来训练符合人类预期的情感类的输入输出,或对于某些垂直领域更多专业知识,会不会达到更好的效果?

也就是 NLP 会脱离文本本身,它用 ChatGPT 的训练方式能够训练出来更多更情感化的东西。这次大家看到它生成了很多创造性的内容,它其实本身就是一个内容的创造者,能不能衍生和泛化到更多更抽象的东西上?

未来当你说话的时候,用标记者这个方式去拓展,它可能能够用大量的数据来猜测你的情绪。虽然过去有很多情绪上的猜测,但很多还是基于文字本身以及视觉(比如看脸的动作,眉毛的抖动等)。标记者这种方式能不能用一个更泛化的方式去猜测情绪,把对人的理解提升到一个新的维度?

如果ChatGPT能继续“模糊地问答”,会提高到新层次

包英泽 跳悦智能创始人兼CEO

现在我觉得 ChatGPT 的问答,更像学术论文式的交流,比如你问:XXX 病毒是什么,起源是什么?ChatGPT 可以严谨给出学术回答。但是,普通人与人之间的互动其实是“一个模糊地提问,对应一个模糊地回答”,但结果是可以统计量化的。

我们需要积累大量的数据,让 AI 能用一种模糊的回答对应到一个模糊的问题,促成商业化的结果。这要么需要花费大量资金做数据标注,要么做一个形成数据闭环的产品。在中国的商业化场景落地,需要 ChatGPT 的数据再提高一个层次。

中国AI在应用层面上领先于海外

刘超 一面数据联合创始人

在技术上面坦白讲,在中国的 AI 的技术应用是领先于国外的。这点也许大家认知不一样,但根据我们过去 5 年的经验来讲,很多海外企业都把中国的 AI 应用场景翻到国外去;很多创业者做的事情也是把场景场化的 AI 迁移到海外去。

落地的时候,可能中国比国外要快一些,因为试错成本要比国外要便宜。伴随着 To C 端的发展,我觉得可能全球网络的监管会变得更谨慎。

二、惊喜过后,ChatGPT面临怎样的挑战?

数据集的更新是一个有待解决的问题

Peak季逸超 Magi创始人

ChatGPT 对我来说是非常震撼的新的科技,最直观一点就是这个模型知道自己什么东西不知道。但是从一个 knowledge graph(知识图谱)和 search engine(搜索引擎)从业者的角度来说,我觉得目前它仍然存在一个比较大的问题。

举一个例子,如果大家玩游戏可能知道,上个月宝可梦系列发售了一个新作《宝可梦:朱/紫》,如果你问 ChatGPT 关于《宝可梦:朱/紫》的信息,它会直截了断地告诉你,宝可梦系列里没有这个游戏,这是网友瞎编的不要去信。

这是因为 ChatGPT 用的是截止到 2021 年第四季度的语料去训练的,这个模型是静态的,训练完的那一刻,所有的信息都被这些参数以某种人类无法理解的形式保存在这个模型中了,它对这个世界的认知也就停在那一刻。

随着轮次的增加,回答的性能会下降

另外还有一个问题,很多人讨论 ChatGPT 多轮对话能力很强。但你会发现,随着轮次的增加,你的上下文会越来越长。我们知道 Transformer 模型计算时的渐进时间复杂度是指数级的,拿到过长的文本就不得不开始剪裁,而剪裁就会导致性能丢失下降。目前 efficient Transformers 和 context 压缩等研究都比较活跃,多轮对话仍然是有很大的提升空间的,可能会诞生一个真正可用的实时大模型。

相较于To B端,更适用于To C端的内容创作

刘超 一面数据联合创始人

我们公司是做 To B 的,之前也给很多大的公司做过一些 AI 语料,用来做企业数据服务。在 To C 端,它的内容创作、营销或对话上是好的,但在 To B 端,它可以被理解为一个非常废话的回答者,To B 端的人往往不太会喜欢这种东西。

但它确实是在迭代的,对于反复回答的体验是有质的提升的。所以我们也很关心未来会有怎样的技术发现,或者通过更多 labeler 的加入,让它的话题质量继续提高。如果数据端的质量能搭配上,以后可能会出现更多的 To B 端的应用。

ChatGPT缺乏严谨计算推理的能力

林东生 悉之智能算法负责人

我们公司主要做的是数学自动解题,当 ChatGPT 出来后就紧锣密鼓做了尝试。数学是一个很严谨的事情,错了就是错了,没有任何可商量,不可能让它有随机性。这其实就是大模型在强逻辑推理情况下比较难受的点。相较于大模型,我相对更坚定地用小模型去做数学解题,一定程度上对端到端能够“完美地完成数学求解”不抱期望。

第一,训练之后,整体的求解思路其实都是对的(主要是初高中的数学非应用题),讲解过程也像模像样。但是对于数学严谨推理来说不太能应用,经常一遇到计算就开始胡说八道,中间的计算过程一旦错了,后面的思路就开始出现偏移了。

图中两道数学题仅仅是一个数字的改变,左图正确求解,右图的结果却是错误的

另一个很有意思的是,感觉 ChatGPT 在应用题的表现是好于非应用题的,测试的过程中 ChatGPT 对于常识的表现是很惊艳的。在数学解题领域,如果它对于语义理解的要求高于对计算的要求的时候,在短期而言能达到的效果其实是更好的。

ChatGPT还需要其它专项性更强的AI模块的支持

陈郢 十荟团创始人

我最近有什么不懂的问题,就开始在 ChatGPT上问,它很快会给我一些回答。我觉得作为一个私人助手来讲,不管是帮我学习和了解一个东西,还是一个工作上的助手,它现在已经是合格的。作为一个工作助理,已经很接近一个有价值的产品了。

当然,ChatGPT 作为一个自然语言模型,它的专业能力不是很强,在数据真实性、严谨性、复杂专业问题的处理等各方面,还需要其他 AI 模块的支持,如 OpenAI 自己的 Davinci ,WebGPT 等。作为一个工作助理来讲,我觉得理想搭配是 ChatGPT 作为自然语言的交互界面,同时背后有其他专业领域的 AI 的支持。

大模型训练的成本高,用户付费意愿有待挖掘

宋嘉伟 笔神作文CEO

我们目前在商业产品中还主要在用小一点的模型,大模型训练一次的成本对于创业公司来说太贵了。我们的 APP 里有一个 AI 自动批改作文的功能,就是用 Albert 来训练的,而模型的推理放在阿里云上。因为我们用户量比较大,所以还是要尽量转成 CPU 可以跑的模型才敢上线正式服务,否则从商业角度考虑,成本会超过收益。

另一方面是 C 端的付费意愿还不够,每一个用户到底愿意为一个更加聪明的AI多付出多少成本,这个商业的假设还有待挖掘和验证。

三、中国创业团队会有怎样新的创业机会?

将这样的大模型应用在缺乏训练样本的垂直领域

Peak季逸超 Magi创始人

我认为大模型最大的能力在于,以后对数据或者对 in house 的 labeler 的要求会越来越少。这提供了一个新的思考方向,当我们要为某一个垂直领域服务时,如果这个垂直领域缺乏训练样本的数据,这时候可以多往大模型方向去想一想,转化成一个 zero-shot 或者对话式的问题。

给未来虚拟世界带来因人而异的体验

代码家 真格基金投资副总裁

这次 AI 的进化,其实能够很大幅度地降低创作的门槛。不论是 AI 生成图片,还是 AI 生成内容,让以前有想法但没有办法的人把想法实现掉。我们也观察到一些 AIGC 的团队,尝试着让用户去编写有意思的内容、驱动的故事情节,又可以观看,又可以体验。

其次,我觉得它有可能会给未来虚拟世界带来因人而异的体验。大家玩游戏的时候经常看到 NPC 都是一模一样。NPC,如果它有很强的对语言的理解,我是不是能走到 NPC 面前主动地说话,它可以主动地回复我,我们俩可以有不同的交互,但最终达到类似的目标,我觉得这里会有非常多创业的机会。

AI能够以辅助的身份弥补人的机械能力

孙宇光 真格基金投资经理

拿游戏来举例,大家如果之前玩过 RTS 游戏知道你要有很强的大局观,同时你要有特别强的操作能力。为什么 RTS 衰落了?一个主要原因是因为它的操作门槛太高,对普通人上手难度太大。

所以 AI 在这里我觉得会有一个方向,无论下棋时通过脑子去硬算,还是打游戏用键鼠快速的操作,其实都是一种劳力。在早期可能没有好的工具的时候,“劳力”是乐趣的一部分,或者是区分人与人水平的一部分。但是当我们现在用辅助工具之后,一定程度一定是让游戏变得更好玩的。AI 会识别你的个人的模式,把模式转变为你的一种能力。

AI可能会以mentor的身份出现

代码家 真格基金投资副总裁

AI 可以作为 mentor 存在,mentor 本身要比你懂得更多,它才能成为你的 mentor,AI 的 mentor 到底长什么样子?它学了足够多的东西,它能收集到你足够多的反馈,它引导你成为更厉害的自己。我觉得玩家其实是很愿意有一个 AI mentor 去带自己。

如果再把这个东西泛化一下,未来会不会有一个 AI 的 mentor 引导你学瑜伽,引导你学数学。

从ChatGPT看商业拐点的重要性

戴雨森 真格基金管理合伙人

大家看 ChatGPT ,可能会觉得一夜之间竟然出现这么好的东西,其实它是经过了非常长期的发展。人类想解决机器对话这件事,严格来说可以追溯到 1960 年代。几种大思路的突破,以及每个思路里面的小突破也花了很长的时间。我觉得这里面体现了拐点的重要性,如果在拐点之前做这个事情,基本上都是做不出来的。

可以说在 GPT 发明之前, NLP 这件事似乎没有什么可用的。尽管 GPT-3 出来时大家觉得很震撼,但因为多轮对话的不可用,导致它的作用其实不大。

所以我觉得第一点,我们要尝试去找指数增长的拐点。因为一个新技术刚出来的时候,你去投资,你去做,其实风险都很大。互联网的拐点也差不多是在 95 年左右发生的,但是其实互联网是 80 年代出现的。在拐点的时候其实弹性是最大的,投资也是有大机会的。

第二点,从新技术来说,往往要先做那些人类目前还不是那么熟练的地方,要做那些对精确度要求不是很高的地方。为什么自动驾驶做了这么久,现在还是很难产出商业价值?第一是因为它对精确性要求非常高,一个新技术你一上来就要求精确性其实蛮难的。第二是驾驶是人类已经很普及,且日常使用频率很高的技能领域,如果要把这个领域直接替代掉,阻力会很大。

第三点,不同的人对新技术出来的态度还挺不一样的。我基本上看到对 ChatGPT 的态度是挺二元的,有的人觉得特别革命,也有人说这其实也没什么。我觉得对待新技术的态度还是要往前看,很多颠覆性的技术出现时,比如 iPhone 出来的时候,也有很多传统做手机的人说这个也没什么。因为很多时候都是身在此山中,有的时候要用自己置身事外的直觉来看。

过去的很多技术其实基本原理都在,但是你没有用“用户能够去用”的包装来打包,就导致会觉得技术上没什么大的突破。在这个过程中,我自己的感觉是 ChatGPT 确实是这几年来见到最惊叹的一个技术突破,不只是惊叹于它的难度本身,而是它真的到了一个“对于普通人友好”的阶段。我觉得这点是很重要的,在这个时候,真的能基于此产出大量的应用。

THE END
0.银河基金郑巍山:算力投入是AI应用发展的基础中国经济网北京3月15日讯 AI作为新一轮科技革命和产业变革的重要驱动力量,受到投资者广泛关注。银河基金郑巍山长期深耕科技领域的研究,他表示,AI板块涉及环节较多,除了下游的AI大模型和应用外,还包括中游的算力和上游的资源。其中算力投入是AI应用发展的基础,算力硬件行业或先于AI应用行业取得发展。 jvzq<84hkpgoen3eg0io1sorf1pkrmlf14636981375u49762576a<=;5863;7xjvor
1.百度新设10亿元基金,孵化AI独角兽独角兽模型文心举办“文心杯” 创业大赛,设立 10 亿元规模的文心投资基金,是百度想在整个人工智能行业培育大模型应用创新的行动。 李彦宏说,他非常看好中国 AI 应用的发展前景,“如果回顾过去几十年历史,在中国大家都非常愿意拥抱新兴技术。虽然我们没有发明 Android、iOS 或 Windows 系统,但我们开发了许多非常创新的应用,比如微信、抖音jvzq<84m0uooc7hqo0io1jwvkerfa@7;646:2A8a3d8d6lh5d2622:jg:z4ivvq
2.金融行业AI大模型百项应用案例综述,银行、保险、券商、基金各显神通三、券商大模型应用案例综述: 四、基金大模型应用案例综述: 如何学习大模型AGI? 由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。 但是具体到个人,只能说是: “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。 jvzquC41dnuh0lxfp0tfv8|gkzooa>>3;377;8ftvkimg8igvcomu865;4956;8
3.AI医疗反复活跃,AI应用端再走强!重仓软件开发行业的信创ETF基金AI医疗反复活跃,AI应用端再走强!重仓软件开发行业的信创ETF基金(562030)最高上探2.86%Video Player is loading.00:00/00:00 Loaded: 0% 视频加载失败,请查看其他精彩视频 相关视频 猜你喜欢 00:08:40 郑丽文:20年前跟连战到大陆,让 00:04:49 能分析CT的AI,正在帮医生拯救 00:00:53 特朗普jvzquC41xkjfq7xkpc4dqv3ep1v0hrscpek04977/29.2=4fgvgjn6npgptz|r:4:7;847i0jvsm
4.5000亿公募新动态,AI+洞察报告出炉基于此,景顺长城基金经理农立冰直言,现阶段更看好具备掌握良好的用户基础和应用场景的既有玩家,而不是AI原生的新应用厂商。另一类他看好的是具备垂直领域数据壁垒的垂类应用厂商,比如金融、法律这样的专业领域,只有高质量的垂类数据才能够保证模型输出的专业性和深度。 jvzquC41hwte0:5lsmg/exr0ep532;9244=0e?:759:77A3ujvsm
5.AI智能终端(端侧)应用类主动型基金筛选分类5其它智能终端——智能家居、智能穿戴(手表、健身追踪器等)、智能玩具等等,从十大重仓股看,基金持股数量少且分散,无法集中归类,不做筛选。 Deep SeeK大模型的发布,强化了国内AI端侧的投资主线,人形机器人、低空经济、智能驾驶等作为AI端侧的核心应用将显著受益,今年的科技成长方向基金选择要重点关注AI应用。301jvzquC41iwhb0nfuvouog‚3eqo5og€x.qh623:=:.3;28;73;29`37mvon
6.“点两下”就能开发一个AI应用!百度砸亿元基金、千万算力要搞插件生态这便是百度联盟最新发布的AI组件商店,把开发AI应用这事搞得不要太简单。 而且假如你是一个插件开发者,也可以基于百度文心大模型,开发出你擅长的能力。 然后再通过AI组件商店,百度联盟将分发给需要的其他开发者;在这个过程中,插件开发者还是会将获得收益的那种哦。 jvzquC41dnuh0lxfp0tfv8VdkvGJ1jwvkerf1mjvckrt1:84:;9259